Survival Analysis in Python
Shae Wang
Senior Data Scientist
After calling .fit()
to fit model to the data:
.predict_median()
: predicts the median lifetimes for subjectsX
: the DataFrame to predict with.conditional_after
: an array or list of values that represent how long subjects have already lived for.model.predict_median(X, conditional_after)
0 inf
1 44.0
2 46.0
3 inf
4 48.0
...
500 inf
.predict_survival_function()
: predicts the survival function for subjects, given their covariates.X
: the DataFrame to predict with.conditional_after
: an array or list of values that represent how long subjects have already lived for.model.predict_survival_function(X, conditional_after)
0 1 2 3 4 ... 500
1.0 0.997616 0.993695 0.994083 0.999045 0.997626 ... 0.998865 0.997827 0.995453 0.997462 ... 0.997826 0.996005 0.996031 0.997774 0.998892 0.999184 0.997033 0.998866 0.998170 0.998610
2.0 0.995230 0.987411 0.988183 0.998089 0.995250 ... 0.997728 0.995653 0.990914 0.994922 ... 0.995649 0.992014 0.992067 0.995547 0.997782 0.998366 0.994065 0.997730 0.996337 0.997217
3.0 0.992848 0.981162 0.982314 0.997133 0.992878 ... 0.996592 0.993482 0.986392 0.992388 ... 0.993476 0.988037 0.988115 0.993324 0.996673 0.997548 0.991105 0.996595 0.994507 0.995826
4.0 0.990468 0.974941 0.976468 0.996176 0.990507 ... 0.995455 0.991311 0.981882 0.989855 ... 0.991304 0.984067 0.984171 0.991100 0.995563 0.996729 0.988147 0.995458 0.992676 0.994433
5.0 0.988085 0.968739 0.970639 0.995216 0.986392 ... 0.993476
Why are survival predictions useful?
Survival Analysis in Python