Introduction to Data Visualization with Matplotlib
Ariel Rokem
Data Scientist
date,co2,relative_temp
1958-03-06,315.71,0.1
1958-04-06,317.45,0.01
1958-05-06,317.5,0.08
1958-06-06,-99.99,-0.05
1958-07-06,315.86,0.06
1958-08-06,314.93,-0.06
...
2016-08-06,402.27,0.98
2016-09-06,401.05,0.87
2016-10-06,401.59,0.89
2016-11-06,403.55,0.93
2016-12-06,404.45,0.81
import pandas as pd
climate_change = pd.read_csv('climate_change.csv', parse_dates=["date"],
index_col="date")
climate_change.index
DatetimeIndex(['1958-03-06', '1958-04-06', '1958-05-06', '1958-06-06',
'1958-07-06', '1958-08-06', '1958-09-06', '1958-10-06',
'1958-11-06', '1958-12-06',
...
'2016-03-06', '2016-04-06', '2016-05-06', '2016-06-06',
'2016-07-06', '2016-08-06', '2016-09-06', '2016-10-06',
'2016-11-06', '2016-12-06'],
dtype='datetime64[ns]', name='date', length=706, freq=None)
climate_change['relative_temp']
0 0.10
1 0.01
2 0.08
3 -0.05
4 0.06
5 -0.06
6 -0.03
7 0.04
...
701 0.98
702 0.87
703 0.89
704 0.93
705 0.81
Name:co2, Length: 706, dtype: float64
climate_change['co2']
0 315.71
1 317.45
2 317.50
3 NaN
4 315.86
5 314.93
6 313.20
7 NaN
...
701 402.27
702 401.05
703 401.59
704 403.55
705 404.45
Name:co2, Length: 706, dtype: float64
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(climate_change.index, climate_change['co2'])
ax.set_xlabel('Time')
ax.set_ylabel('CO2 (ppm)')
plt.show()
sixties = climate_change["1960-01-01":"1969-12-31"]
fig, ax = plt.subplots()
ax.plot(sixties.index, sixties['co2'])
ax.set_xlabel('Time')
ax.set_ylabel('CO2 (ppm)')
plt.show()
sixty_nine = climate_change["1969-01-01":"1969-12-31"]
fig, ax = plt.subplots() ax.plot(sixty_nine.index, sixty_nine['co2']) ax.set_xlabel('Time') ax.set_ylabel('CO2 (ppm)') plt.show()
Introduction to Data Visualization with Matplotlib