Introduction to Data Visualization with ggplot2
Rick Scavetta
Founder, Scavetta Academy
Geom | Stat | Action |
---|---|---|
geom_bar() |
"count" | Counts the number of cases at each x position |
geom_col() |
"identity" | Plot actual values |
Geom | Stat | Action |
---|---|---|
geom_bar() |
"count" | Counts the number of cases at each x position |
geom_col() |
"identity" | Plot actual values |
Geom | Stat | Action |
---|---|---|
geom_bar() |
"count" | Counts the number of cases at each x position |
geom_col() |
"identity" | Plot actual values |
str(sleep)
'data.frame': 76 obs. of 3 variables:
$ vore : Factor w/ 4 levels "carni","herbi",..: 1 4 2 4 2 2 1 1 2 2 ...
$ total: num 12.1 17 14.4 14.9 4 14.4 8.7 10.1 3 5.3 ...
$ rem : num NA 1.8 2.4 2.3 0.7 2.2 1.4 2.9 NA 0.6 ...
ggplot(sleep, aes(vore)) +
geom_bar()
# Calculate Descriptive Statistics:
iris %>%
select(Species, Sepal.Width) %>%
pivot_longer(!Species, names_to = "key",
values_to = "value") %>%
group_by(Species) %>%
summarise(avg = mean(value),
stdev = sd(value))
-> iris_summ_long
iris_summ_long
Species | avg | stdev |
---|---|---|
setosa | 3.43 | 0.38 |
versicolor | 2.77 | 0.31 |
virginica | 2.97 | 0.32 |
ggplot(iris_summ_long, aes(x = Species,
y = avg)) +
geom_col() +
geom_errorbar(aes(ymin = avg - stdev,
ymax = avg + stdev),
width = 0.1)
Introduction to Data Visualization with ggplot2