Introduction to Statistics in R
Maggie Matsui
Content Developer, DataCamp




Expected value: mean of a probability distribution
Expected value of a fair die roll = $(1 \times \frac{1}{6}) + (2 \times \frac{1}{6}) +(3 \times \frac{1}{6}) +(4 \times \frac{1}{6}) +(5 \times \frac{1}{6}) +(6 \times \frac{1}{6}) = 3.5$

$$P(\text{die roll}) \le 2 = ~?$$

$$P(\text{die roll}) \le 2 = 1/3$$


Expected value of uneven die roll = $(1 \times \frac{1}{6}) +(2 \times 0) +(3 \times \frac{1}{3}) +(4 \times \frac{1}{6}) +(5 \times \frac{1}{6}) +(6 \times \frac{1}{6}) = 3.67$

$$P(\text{uneven die roll}) \le 2 = ~?$$

$$P(\text{uneven die roll}) \le 2 = 1/6$$

Describe probabilities for discrete outcomes

Discrete uniform distribution

die
   n
1  1
2  2
3  3
4  4
5  5
6  6
mean(die$n)
3.5
rolls_10 <- die %>%
  sample_n(10, replace = TRUE)
rolls_10
   n
1  1
2  1
3  5
4  2
5  1
6  1
7  6
8  6
...
ggplot(rolls_10, aes(n)) +
  geom_histogram(bins = 6)


mean(rolls_10$n) = 3.0

mean(die$n) = 3.5

mean(rolls_100$n) = 3.36

mean(die$n) = 3.5

mean(rolls_1000$n) = 3.53

mean(die$n) = 3.5
As the size of your sample increases, the sample mean will approach the expected value.
| Sample size | Mean | 
|---|---|
| 10 | 3.00 | 
| 100 | 3.36 | 
| 1000 | 3.53 | 
Introduction to Statistics in R