Data Manipulation with dplyr
James Chapman
Curriculum Manager, DataCamp
counties_selected <- counties %>%
select(state, county, population, unemployment, income)
counties_selected %>%
group_by(state) %>%
slice_max(population, n = 1)
# A tibble: 50 x 5
# Groups: state [50]
state county population unemployment income
<chr> <chr> <dbl> <dbl> <dbl>
1 Alabama Jefferson 659026 9.1 45610
2 Alaska Anchorage Municipality 299107 6.7 78326
3 Arizona Maricopa 4018143 7.7 54229
4 Arkansas Pulaski 390463 7.5 46140
5 California Los Angeles 10038388 10 56196
6 Colorado El Paso 655024 8.4 58206
7 Connecticut Fairfield 939983 9 84233
8 Delaware New Castle 549643 7.4 65476
9 Florida Miami-Dade 2639042 10 43129
10 Georgia Fulton 983903 9.9 57207
# … with 40 more rows
counties_selected %>%
group_by(state) %>%
slice_min(unemployment, n = 1)
# A tibble: 51 × 5
# Groups: state [50]
state county population unemployment income
<chr> <chr> <dbl> <dbl> <dbl>
1 Alabama Shelby 203530 5.5 70187
2 Alaska Aleutians West Census Area 5684 2.1 84306
3 Arizona Maricopa 4018143 7.7 54229
4 Arkansas Benton 238198 4.2 56239
5 California Marin 258349 5.7 93257
6 Colorado Jackson 1335 1.5 46014
7 Connecticut Middlesex 165165 6 79893
8 Delaware New Castle 549643 7.4 65476
9 Florida Monroe 75901 6 57290
10 Georgia Bacon 11222 4.4 37162
# … with 41 more rows
counties_selected %>%
group_by(state) %>%
slice_max(unemployment, n = 3)
# A tibble: 153 × 5
# Groups: state [50]
state county population unemployment income
<chr> <chr> <dbl> <dbl> <dbl>
1 Alabama Conecuh 12865 22.6 24900
2 Alabama Wilcox 11235 20.8 23750
3 Alabama Monroe 22217 20.7 27257
4 Alaska Northwest Arctic Borough 7732 21.9 63648
5 Alaska Yukon-Koyukuk Census Area 5644 18.2 38491
6 Alaska Bethel Census Area 17776 17.6 51012
7 Arizona Navajo 107656 19.8 35921
8 Arizona Apache 72124 18.2 31757
9 Arizona Graham 37407 14.1 45964
10 Arkansas Phillips 20391 18.1 26844
# … with 143 more rows
Data Manipulation with dplyr