Unsupervised Learning in Python
Benjamin Wilson
Director of Research at lateral.io
sklearn
("scikit-learn")print(samples)
[[ 5. 3.3 1.4 0.2]
[ 5. 3.5 1.3 0.3]
...
[ 7.2 3.2 6. 1.8]]
from sklearn.cluster import KMeans
model = KMeans(n_clusters=3)
model.fit(samples)
KMeans(n_clusters=3)
labels = model.predict(samples)
print(labels)
[0 0 1 1 0 1 2 1 0 1 ...]
print(new_samples)
[[ 5.7 4.4 1.5 0.4]
[ 6.5 3. 5.5 1.8]
[ 5.8 2.7 5.1 1.9]]
new_labels = model.predict(new_samples)
print(new_labels)
[0 2 1]
matplotlib.pyplot
)import matplotlib.pyplot as plt
xs = samples[:,0] ys = samples[:,2]
plt.scatter(xs, ys, c=labels)
plt.show()
Unsupervised Learning in Python