Introduction to Natural Language Processing in Python
Katharine Jarmul
Founder, kjamistan
CountVectorizer
acts as a featurefrom sklearn.naive_bayes import MultinomialNB
from sklearn import metrics
nb_classifier = MultinomialNB() nb_classifier.fit(count_train, y_train)
pred = nb_classifier.predict(count_test)
metrics.accuracy_score(y_test, pred)
0.85841849389820424
metrics.confusion_matrix(y_test, pred, labels=[0,1])
array([[6410, 563],
[ 864, 2242]])
Action | Sci-Fi | |
---|---|---|
Action | 6410 | 563 |
Sci-Fi | 864 | 2242 |
Introduction to Natural Language Processing in Python