Using models

Introduction to Deep Learning in Python

Dan Becker

Data Scientist and contributor to Keras and TensorFlow libraries

Using models

  • Save
  • Reload
  • Make predictions
Introduction to Deep Learning in Python

Saving, reloading, and using your Model

from tensorflow.keras.models import load_model
model.save('model_file.h5')
my_model = load_model('model_file.h5')
predictions = my_model.predict(data_to_predict_with)
probability_true = predictions[:,1]
Introduction to Deep Learning in Python

Verifying model structure

my_model.summary()
_____________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
=========================================================================================
dense_1 (Dense)                  (None, 100)           1100        dense_input_1[0][0]
_____________________________________________________________________________________________
dense_2 (Dense)                  (None, 100)           10100       dense_1[0][0]
_____________________________________________________________________________________________
dense_3 (Dense)                  (None, 100)           10100       dense_2[0][0]
_____________________________________________________________________________________________
dense_4 (Dense)                  (None, 2)             202         dense_3[0][0]
=========================================================================================
Total params: 21,502
Trainable params: 21,502
Non-trainable params: 0
Introduction to Deep Learning in Python

Let's practice!

Introduction to Deep Learning in Python

Preparing Video For Download...