Introduction to Deep Learning in Python
Dan Becker
Data Scientist and contributor to Keras and TensorFlow libraries
n_cols = predictors.shape[1]
model = Sequential()
model.add(Dense(100, activation='relu', input_shape=(n_cols,)))
model.add(Dense(100, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mean_squared_error')
n_cols = predictors.shape[1]
model = Sequential()
model.add(Dense(100, activation='relu', input_shape=(n_cols,)))
model.add(Dense(100, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(predictors, target)
Introduction to Deep Learning in Python