Hypothesis Testing in Python
James Chapman
Curriculum Manager, DataCamp
Control:
Treatment:
import pandas as pd
print(stack_overflow)
respondent age_1st_code ... age hobbyist
0 36.0 30.0 ... 34.0 Yes
1 47.0 10.0 ... 53.0 Yes
2 69.0 12.0 ... 25.0 Yes
3 125.0 30.0 ... 41.0 Yes
4 147.0 15.0 ... 28.0 No
... ... ... ... ... ...
2259 62867.0 13.0 ... 33.0 Yes
2260 62882.0 13.0 ... 28.0 Yes
[2261 rows x 8 columns]
A hypothesis:
The mean annual compensation of the population of data scientists is $110,000
The point estimate (sample statistic):
mean_comp_samp = stack_overflow['converted_comp'].mean()
119574.71738168952
import numpy as np
# Step 3. Repeat steps 1 & 2 many times, appending to a list so_boot_distn = [] for i in range(5000): so_boot_distn.append(
# Step 2. Calculate point estimate np.mean(
# Step 1. Resample stack_overflow.sample(frac=1, replace=True)['converted_comp']
)
)
import matplotlib.pyplot as plt
plt.hist(so_boot_distn, bins=50)
plt.show()
std_error = np.std(so_boot_distn, ddof=1)
5607.997577378606
$\text{standardized value} = \dfrac{\text{value} - \text{mean}}{\text{standard deviation}}$
$z = \dfrac{\text{sample stat} - \text{hypoth. param. value}}{\text{standard error}}$
$z = \dfrac{\text{sample stat} - \text{hypoth. param. value}}{\text{standard error}}$
stack_overflow['converted_comp'].mean()
119574.71738168952
mean_comp_hyp = 110000
std_error
5607.997577378606
z_score = (mean_comp_samp - mean_comp_hyp) / std_error
1.7073326529796957
Determine whether sample statistics are close to or far away from expected (or "hypothesized" values)
Standard normal distribution: normal distribution with mean = 0 + standard deviation = 1
Hypothesis Testing in Python