Introduction to Regression with statsmodels in Python
Maarten Van den Broeck
Content Developer at DataCamp
n_claims | total_payment_sek |
---|---|
108 | 392.5 |
19 | 46.2 |
13 | 15.7 |
124 | 422.2 |
40 | 119.4 |
... | ... |
import pandas as pd
print(swedish_motor_insurance.mean())
n_claims 22.904762
total_payment_sek 98.187302
dtype: float64
print(swedish_motor_insurance['n_claims'].corr(swedish_motor_insurance['total_payment_sek']))
0.9128782350234068
n_claims | total_payment_sek |
---|---|
108 | 3925 |
19 | 462 |
13 | 157 |
124 | 4222 |
40 | 1194 |
200 | ??? |
The variable that you want to predict.
The variables that explain how the response variable will change.
import matplotlib.pyplot as plt
import seaborn as sns
sns.scatterplot(x="n_claims",
y="total_payment_sek",
data=swedish_motor_insurance)
plt.show()
sns.regplot(x="n_claims",
y="total_payment_sek",
data=swedish_motor_insurance,
ci=None)
Visualizing and fitting linear regression models.
Making predictions from linear regression models and understanding model coefficients.
Assessing the quality of the linear regression model.
Same again, but with logistic regression models
statsmodels
scikit-learn
Introduction to Regression with statsmodels in Python