Introduction to LLMs in Python
Jasmin Ludolf
Senior Data Science Content Developer, DataCamp
"distilbert-base-uncased-distilled-squad"
llm = pipeline(model="bert-base-uncased")
print(llm.model)
BertForMaskedLM(
(bert): ...
)
(encoder): BertEncoder(
...
print(llm.model.config)
BertConfig {
...
"architectures": [
"BertForMaskedLM"
...
print(llm.model.config.is_decoder)
False
llm.model.config.is_encoder_decoder
"gpt-3.5-turbo"
llm = pipeline(model="gpt2")
print(llm.model.config)
GPT2Config {
...
"architectures": [
"GPT2LMHeadModel"
],
...
"task_specific_params": {
"text-generation": {
...
print(llm.model.config.is_decoder)
False
llm = pipeline(model="Helsinki-NLP/opus-mt-es-en")
print(llm.model)
MarianMTModel(
...
(encoder): MarianEncoder(
...
(decoder): MarianDecoder(
...
print(llm.model.config)
MarianConfig {
...
"decoder_attention_heads": 8,
...
"encoder_attention_heads": 8,
...
"is_encoder_decoder": true,
...
print(llm.model.config.is_encoder_decoder)
True
Introduction to LLMs in Python