Preprocessing for Machine Learning in Python
James Chapman
Curriculum Manager, DataCamp
print(df)
col1 col2 col3
0 1.00 48.0 100.0
1 1.20 45.5 101.3
2 0.75 46.2 103.5
3 1.60 50.0 104.0
print(df.var())
col1 0.128958
col2 4.055833
col3 3.526667
dtype: float64
from sklearn.preprocessing import StandardScaler scaler = StandardScaler()
df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
print(df_scaled)
col1 col2 col3
0 -0.442127 0.329683 -1.352726
1 0.200967 -1.103723 -0.553388
2 -1.245995 -0.702369 0.799338
3 1.487156 1.476409 1.106776
print(df_scaled.var())
col1 1.333333
col2 1.333333
col3 1.333333
dtype: float64
Preprocessing for Machine Learning in Python