Linear Classifiers in Python
Michael (Mike) Gelbart
Instructor, The University of British Columbia
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train, y_train)
lr.predict(X_test)
lr.score(X_test, y_test)
import sklearn.datasets wine = sklearn.datasets.load_wine()
from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(wine.data, wine.target)
lr.score(wine.data, wine.target)
0.966
lr.predict_proba(wine.data[:1])
array([[9.966e-01, 2.740e-03, 6.787e-04]])
LinearSVC
works the same way:
import sklearn.datasets wine = sklearn.datasets.load_wine()
from sklearn.svm import LinearSVC svm = LinearSVC() svm.fit(wine.data, wine.target)
svm.score(wine.data, wine.target)
0.955
import sklearn.datasets wine = sklearn.datasets.load_wine()
from sklearn.svm import SVC svm = SVC() svm.fit(wine.data, wine.target);
svm.score(wine.data, wine.target)
0.708
Model complexity review:
Linear Classifiers in Python