Applying logistic regression and SVM

Linear Classifiers in Python

Michael (Mike) Gelbart

Instructor, The University of British Columbia

Using LogisticRegression

from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()

lr.fit(X_train, y_train)
lr.predict(X_test)
lr.score(X_test, y_test)
Linear Classifiers in Python

LogisticRegression example

import sklearn.datasets
wine = sklearn.datasets.load_wine()

from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(wine.data, wine.target)
lr.score(wine.data, wine.target)
0.966
lr.predict_proba(wine.data[:1])
array([[9.966e-01, 2.740e-03, 6.787e-04]])
Linear Classifiers in Python

Using LinearSVC

LinearSVC works the same way:

import sklearn.datasets

wine = sklearn.datasets.load_wine()

from sklearn.svm import LinearSVC svm = LinearSVC() svm.fit(wine.data, wine.target)
svm.score(wine.data, wine.target)
0.955
Linear Classifiers in Python

Using SVC

import sklearn.datasets
wine = sklearn.datasets.load_wine()

from sklearn.svm import SVC svm = SVC() svm.fit(wine.data, wine.target);
svm.score(wine.data, wine.target)
0.708

Model complexity review:

  • Underfitting: model is too simple, low training accuracy
  • Overfitting: model is too complex, low test accuracy
Linear Classifiers in Python

Let's practice!

Linear Classifiers in Python

Preparing Video For Download...