Linear Classifiers in Python
Michael (Mike) Gelbart
Instructor, The University of British Columbia
lr0.fit(X, y==0)
lr1.fit(X, y==1)
lr2.fit(X, y==2)
# get raw model output
lr0.decision_function(X)[0]
6.124
lr1.decision_function(X)[0]
-5.429
lr2.decision_function(X)[0]
-7.532
lr = LogisticRegression(multi_class='ovr') lr.fit(X, y)
lr.predict(X)[0]
0
One-vs-rest:
"Multinomial" or "softmax":
lr_ovr = LogisticRegression(multi_class='ovr')
lr_ovr.fit(X,y)
lr_ovr.coef_.shape
(3,13)
lr_ovr.intercept_.shape
(3,)
lr_mn = LogisticRegression(multi_class="multinomial")
lr_mn.fit(X,y)
lr_mn.coef_.shape
(3,13)
lr_mn.intercept_.shape
(3,)
Linear Classifiers in Python