Interacting with DataFrames using PySpark SQL

Big Data Fundamentals with PySpark

Upendra Devisetty

Science Analyst, CyVerse

DataFrame API vs SQL queries

  • In PySpark You can interact with SparkSQL through DataFrame API and SQL queries

  • The DataFrame API provides a programmatic domain-specific language (DSL) for data

  • DataFrame transformations and actions are easier to construct programmatically

  • SQL queries can be concise and easier to understand and portable

  • The operations on DataFrames can also be done using SQL queries

Big Data Fundamentals with PySpark

Executing SQL Queries

  • The SparkSession sql() method executes SQL query

  • sql() method takes a SQL statement as an argument and returns the result as DataFrame

df.createOrReplaceTempView("table1")
df2 = spark.sql("SELECT field1, field2 FROM table1")
df2.collect()
[Row(f1=1, f2='row1'), Row(f1=2, f2='row2'), Row(f1=3, f2='row3')]
Big Data Fundamentals with PySpark

SQL query to extract data

test_df.createOrReplaceTempView("test_table")
query = '''SELECT Product_ID FROM test_table'''
test_product_df = spark.sql(query)
test_product_df.show(5)
+----------+
|Product_ID|
+----------+
| P00069042|
| P00248942|
| P00087842|
| P00085442|
| P00285442|
+----------+
Big Data Fundamentals with PySpark

Summarizing and grouping data using SQL queries

test_df.createOrReplaceTempView("test_table")
query = '''SELECT Age, max(Purchase) FROM test_table GROUP BY Age'''
spark.sql(query).show(5)
+-----+-------------+
|  Age|max(Purchase)|
+-----+-------------+
|18-25|        23958|
|26-35|        23961|
| 0-17|        23955|
|46-50|        23960|
|51-55|        23960|
+-----+-------------+
only showing top 5 rows
Big Data Fundamentals with PySpark

Filtering columns using SQL queries

test_df.createOrReplaceTempView("test_table")
query = '''SELECT Age, Purchase, Gender FROM test_table WHERE Purchase > 20000 AND Gender == "F"'''
spark.sql(query).show(5)
+-----+--------+------+
|  Age|Purchase|Gender|
+-----+--------+------+
|36-45|   23792|     F|
|26-35|   21002|     F|
|26-35|   23595|     F|
|26-35|   23341|     F|
|46-50|   20771|     F|
+-----+--------+------+
only showing top 5 rows
Big Data Fundamentals with PySpark

Time to practice!

Big Data Fundamentals with PySpark

Preparing Video For Download...