Big Data Fundamentals with PySpark
Upendra Devisetty
Science Analyst, CyVerse
In PySpark You can interact with SparkSQL through DataFrame API and SQL queries
The DataFrame API provides a programmatic domain-specific language (DSL) for data
DataFrame transformations and actions are easier to construct programmatically
SQL queries can be concise and easier to understand and portable
The operations on DataFrames can also be done using SQL queries
The SparkSession sql()
method executes SQL query
sql()
method takes a SQL statement as an argument and returns the result as DataFrame
df.createOrReplaceTempView("table1")
df2 = spark.sql("SELECT field1, field2 FROM table1")
df2.collect()
[Row(f1=1, f2='row1'), Row(f1=2, f2='row2'), Row(f1=3, f2='row3')]
test_df.createOrReplaceTempView("test_table")
query = '''SELECT Product_ID FROM test_table'''
test_product_df = spark.sql(query)
test_product_df.show(5)
+----------+
|Product_ID|
+----------+
| P00069042|
| P00248942|
| P00087842|
| P00085442|
| P00285442|
+----------+
test_df.createOrReplaceTempView("test_table")
query = '''SELECT Age, max(Purchase) FROM test_table GROUP BY Age'''
spark.sql(query).show(5)
+-----+-------------+
| Age|max(Purchase)|
+-----+-------------+
|18-25| 23958|
|26-35| 23961|
| 0-17| 23955|
|46-50| 23960|
|51-55| 23960|
+-----+-------------+
only showing top 5 rows
test_df.createOrReplaceTempView("test_table")
query = '''SELECT Age, Purchase, Gender FROM test_table WHERE Purchase > 20000 AND Gender == "F"'''
spark.sql(query).show(5)
+-----+--------+------+
| Age|Purchase|Gender|
+-----+--------+------+
|36-45| 23792| F|
|26-35| 21002| F|
|26-35| 23595| F|
|26-35| 23341| F|
|46-50| 20771| F|
+-----+--------+------+
only showing top 5 rows
Big Data Fundamentals with PySpark