Manipulating Time Series Data in Python
Stefan Jansen
Founder & Lead Data Scientist at Applied Artificial Intelligence
.resample(): similar to .groupby()
Groups data within resampling period and applies one or several methods to each group
New date determined by offset - start, end, etc
Upsampling: fill from existing or interpolate values
Downsampling: apply aggregation to existing data
unrate = pd.read_csv('unrate.csv', parse_dates['Date'], index_col='Date')unrate.info()
DatetimeIndex: 208 entries, 2000-01-01 to 2017-04-01
Data columns (total 1 columns):
UNRATE    208 non-null float64 # no frequency information
dtypes: float64(1)
unrate.head()
            UNRATE
DATE
2000-01-01     4.0
2000-02-01     4.1
2000-03-01     4.0
2000-04-01     3.8
2000-05-01     4.0
| Frequency | Alias | Sample Date | 
|---|---|---|
| Calendar Month End | M | 2017-04-30 | 
| Calendar Month Start | MS | 2017-04-01 | 
| Business Month End | BM | 2017-04-28 | 
| Business Month Start | BMS | 2017-04-03 | 


unrate.asfreq('MS').info()
DatetimeIndex: 208 entries, 2000-01-01 to 2017-04-01
Freq: MS
Data columns (total 1 columns):
UNRATE    208 non-null float64
dtypes: float64(1)
unrate.resample('MS') # creates Resampler object
DatetimeIndexResampler [freq=<MonthBegin>, axis=0, closed=left, 
                        label=left, convention=start, base=0]
  unrate.asfreq('MS').equals(unrate.resample('MS').asfreq())
True
.resample(): returns data only when calling another methodgdp = pd.read_csv('gdp.csv')gdp.info()
DatetimeIndex: 69 entries, 2000-01-01 to 2017-01-01
Data columns (total 1 columns):
gpd    69 non-null float64 # no frequency info
dtypes: float64(1)
gdp.head(2)
            gpd
DATE
2000-01-01  1.2
2000-04-01  7.8
  gdp_1 = gdp.resample('MS').ffill().add_suffix('_ffill')
       gpd_ffill
DATE
2000-01-01  1.2
2000-02-01  1.2
2000-03-01  1.2
2000-04-01  7.8
  gdp_2 = gdp.resample('MS').interpolate().add_suffix('_inter')
            gpd_inter
DATE
2000-01-01  1.200000
2000-02-01  3.400000
2000-03-01  5.600000
2000-04-01  7.800000
.interpolate(): finds points on straight line between existing datadf1 = pd.DataFrame([1, 2, 3], columns=['df1'])df2 = pd.DataFrame([4, 5, 6], columns=['df2'])pd.concat([df1, df2])
   df1  df2
0  1.0  NaN
1  2.0  NaN
2  3.0  NaN
0  NaN  4.0
1  NaN  5.0
2  NaN  6.0
  pd.concat([df1, df2], axis=1)
   df1  df2
0    1    4
1    2    5
2    3    6
axis=1: concatenate horizontallypd.concat([gdp_1, gdp_2], axis=1).loc['2015':].plot()

pd.concat([unrate, gdp_inter], axis=1).plot();

Manipulating Time Series Data in Python