Expanding window functions with pandas

Manipulating Time Series Data in Python

Stefan Jansen

Founder & Lead Data Scientist at Applied Artificial Intelligence

Expanding windows in pandas

  • From rolling to expanding windows
  • Calculate metrics for periods up to current date
  • New time series reflects all historical values
  • Useful for running rate of return, running min/max
  • Two options with pandas:
    • .expanding() - just like .rolling()
    • .cumsum(), .cumprod(), cummin()/max()
Manipulating Time Series Data in Python

The basic idea

df = pd.DataFrame({'data': range(5)})

df['expanding sum'] = df.data.expanding().sum()
df['cumulative sum'] = df.data.cumsum()
df
   data  expanding sum  cumulative sum
0     0            0.0               0
1     1            1.0               1
2     2            3.0               3
3     3            6.0               6
4     4           10.0              10
Manipulating Time Series Data in Python

Get data for the S&P 500

data = pd.read_csv('sp500.csv', parse_dates=['date'], index_col='date')
DatetimeIndex: 2519 entries, 2007-05-24 to 2017-05-24
Data columns (total 1 columns):
SP500    2519 non-null float64

ch3_2_v2 - Expanding Window Functions with Pandas.013.png

Manipulating Time Series Data in Python

How to calculate a running return

  • Single period return $r_t$: current price over last price minus 1:

    $$r_t = \frac{P_t}{P_{t-1}} - 1$$

    • Multi-period return: product of $(1 + r_t)$ for all periods, minus 1:

    $$R_T = (1 + r_1)(1 + r_2)...(1 + r_T) - 1$$

    • For the period return: .pct_change()
    • For basic math .add(), .sub(), .mul(), .div()
    • For cumulative product: .cumprod()
Manipulating Time Series Data in Python

Running rate of return in practice

pr = data.SP500.pct_change() # period return

pr_plus_one = pr.add(1)
cumulative_return = pr_plus_one.cumprod().sub(1)
cumulative_return.mul(100).plot()

ch3_2_v2 - Expanding Window Functions with Pandas.021.png

Manipulating Time Series Data in Python

Getting the running min & max

data['running_min'] = data.SP500.expanding().min()

data['running_max'] = data.SP500.expanding().max()
data.plot()

ch3_2_v2 - Expanding Window Functions with Pandas.023.png

Manipulating Time Series Data in Python

Rolling annual rate of return

def multi_period_return(period_returns):
    return np.prod(period_returns + 1) - 1

pr = data.SP500.pct_change() # period return
r = pr.rolling('360D').apply(multi_period_return)
data['Rolling 1yr Return'] = r.mul(100)
data.plot(subplots=True)
Manipulating Time Series Data in Python

Rolling annual rate of return

data['Rolling 1yr Return'] = r.mul(100)

data.plot(subplots=True)

ch3_2_v2 - Expanding Window Functions with Pandas.027.png

Manipulating Time Series Data in Python

Let's practice!

Manipulating Time Series Data in Python

Preparing Video For Download...