Manipulating Time Series Data in Python
Stefan Jansen
Founder & Lead Data Scientist at Applied Artificial Intelligence
Basic time series transformations include:
Parsing string dates and convert to datetime64
Selecting & slicing for specific subperiods
Setting & changing DateTimeIndex
frequency
google = pd.read_csv('google.csv') # import pandas as pd
google.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 504 entries, 0 to 503
Data columns (total 2 columns):
date 504 non-null object
price 504 non-null float64
dtypes: float64(1), object(1)
google.head()
date price
0 2015-01-02 524.81
1 2015-01-05 513.87
2 2015-01-06 501.96
3 2015-01-07 501.10
4 2015-01-08 502.68
pd.to_datetime()
:datetime64
google.date = pd.to_datetime(google.date)
google.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 504 entries, 0 to 503
Data columns (total 2 columns):
date 504 non-null datetime64[ns]
price 504 non-null float64
dtypes: datetime64[ns](1), float64(1)
.set_index()
:inplace
: google.set_index('date', inplace=True)
google.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 504 entries, 2015-01-02 to 2016-12-30
Data columns (total 1 columns):
price 504 non-null float64
dtypes: float64(1)
google.price.plot(title='Google Stock Price')
plt.tight_layout(); plt.show()
google['2015'].info() # Pass string for part of date
DatetimeIndex: 252 entries, 2015-01-02 to 2015-12-31
Data columns (total 1 columns):
price 252 non-null float64
dtypes: float64(1)
google['2015-3': '2016-2'].info() # Slice includes last month
DatetimeIndex: 252 entries, 2015-03-02 to 2016-02-29
Data columns (total 1 columns):
price 252 non-null float64
dtypes: float64(1)
memory usage: 3.9 KB
google.loc['2016-6-1', 'price'] # Use full date with .loc[]
734.15
.asfreq('D')
:DateTimeIndex
to calendar day frequencygoogle.asfreq('D').info() # set calendar day frequency
DatetimeIndex: 729 entries, 2015-01-02 to 2016-12-30
Freq: D
Data columns (total 1 columns):
price 504 non-null float64
dtypes: float64(1)
google.asfreq('D').head()
price
date
2015-01-02 524.81
2015-01-03 NaN
2015-01-04 NaN
2015-01-05 513.87
2015-01-06 501.96
.asfreq('B')
:DateTimeIndex
to business day frequencygoogle = google.asfreq('B') # Change to calendar day frequency
google.info()
DatetimeIndex: 521 entries, 2015-01-02 to 2016-12-30
Freq: B
Data columns (total 1 columns):
price 504 non-null float64
dtypes: float64(1)
google[google.price.isnull()] # Select missing 'price' values
price
date
2015-01-19 NaN
2015-02-16 NaN
...
2016-11-24 NaN
2016-12-26 NaN
Manipulating Time Series Data in Python