Introduction to Deep Learning with Keras
Miguel Esteban
Data Scientist & Founder
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # Instantiate model model = Sequential()
# Add input and hidden layers model.add(Dense(2, input_shape=(1,)))
# Add an output layer for the 3 classes and sigmoid activation model.add(Dense(3, activation='sigmoid'))
# Compile the model with binary crossentropy
model.compile(optimizer='adam', loss='binary_crossentropy')
# Train your model, recall validation_split
model.fit(X_train, y_train,
epochs=100,
validation_split=0.2)
Train on 1260 samples, validate on 280 samples
Epoch 1/100
1260/1260 [==============================] - 0s 285us/step
- loss: 0.7035 - acc: 0.6690 - val_loss: 0.5178 - val_acc: 0.7714
...
Introduction to Deep Learning with Keras