Time Series Analysis in Python
Rob Reider
Adjunct Professor, NYU-Courant Consultant, Quantopian
$\large \quad \quad \quad \quad R_t \quad \ \ = \quad \mu \quad + \quad \phi \quad R_{t-1} \quad \ + \quad \epsilon_t$
$\large \quad \quad \quad \quad R_t \quad \ \ = \quad \mu \quad + \quad \phi \quad R_{t-1} \quad \ + \quad \epsilon_t$
$\large \phi=0.9$
$\large \phi=0.5$
$\large \phi=-0.9$
$\large \phi=-0.5$
$\large \phi=0.9$
$\large \phi=0.5$
$\large \phi=-0.9$
$\large \phi=-0.5$
$\large \quad \quad R_t = \mu + \phi_1 R_{t-1} + \epsilon_t$
$\large \quad \quad R_t = \mu + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \epsilon_t$
$\large \quad \quad R_t = \mu + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \phi_3 R_{t-3} + \epsilon_t$
from statsmodels.tsa.arima_process import ArmaProcess
ar = np.array([1, -0.9])
ma = np.array([1])
AR_object = ArmaProcess(ar, ma)
simulated_data = AR_object.generate_sample(nsample=1000)
plt.plot(simulated_data)
Time Series Analysis in Python