Credit Risk Modeling in Python
Michael Crabtree
Data Scientist, Ford Motor Company
.score()
method from scikit-learn# Check the accuracy against the test data
clf_logistic1.score(X_test,y_test)
0.81
loan_status
predicted correctlyfallout, sensitivity, thresholds = roc_curve(y_test, prob_default)
plt.plot(fallout, sensitivity, color = 'darkorange')
0.5
preds = clf_logistic.predict_proba(X_test)
preds_df = pd.DataFrame(preds[:,1], columns = ['prob_default'])
preds_df['loan_status'] = preds_df['prob_default'].apply(lambda x: 1 if x > 0.5 else 0)
classification_report()
within scikit-learnfrom sklearn.metrics import classification_report
classification_report(y_test, preds_df['loan_status'], target_names=target_names)
classification_report()
precision_recall_fscore_support()
function from scikit-learnfrom sklearn.metrics import precision_recall_fscore_support
precision_recall_fscore_support(y_test,preds_df['loan_status'])[1][1]
Credit Risk Modeling in Python