Quantitative Risk Management in Python
Jamsheed Shorish
Computational Economist
from scipy.stats import gaussian_kde
kde = guassian_kde(losses)
loss_range = np.linspace(np.min(losses), np.max(losses), 1000)
plt.plot(loss_range, kde.pdf(loss_range))
gaussian_kde
.resample()
methodgaussian_kde
has no .expect()
method => compute integral manually .expect()
method written for exercisesample = kde.resample(size = 1000)
VaR_99 = np.quantile(sample, 0.99)
print("VaR_99 from KDE: ", VaR_99)
VaR_99 from KDE: 0.08796423698448601
Quantitative Risk Management in Python