Quantitative Risk Management in Python
Jamsheed Shorish
CEO, Shorish Research
/
exchange rate
= 1
: USD 100 x EUR 1 / USD 1 = EUR 100.
= 1
: = USD 100 x EUR r / 1 USD = EUR 100 x r


loss observationsloss.quantile() at specified confidence levelVaR = computed .quantile() at desired confidence level
scipy.stats loss distribution: percent point function .ppf() can also be used
loss = pd.Series(observations)VaR_95 = loss.quantile(0.95) print("VaR_95 = ", VaR_95)
Var_95 = 1.6192834157254088
scipy.stats.norm.expect() does this).losses = pd.Series(scipy.stats.norm.rvs(size=1000))VaR_95 = scipy.stats.norm.ppf(0.95)CVaR_95 = (1/(1 - 0.95))*scipy.stats.norm.expect(lambda x: x, lb = VaR_95)print("CVaR_95 = ", CVaR_95)
CVaR_95 = 2.153595332530393




Quantitative Risk Management in Python