Quantitative Risk Management in Python
Jamsheed Shorish
Computational Economist
asset_returnsportfolio_returns using portfolio weightsportfolio_returns into lossesnp.quantile() for losses at e.g. 95% confidence level
weights = [0.25, 0.25, 0.25, 0.25]portfolio_returns = asset_returns.dot(weights)losses = - portfolio_returnsVaR_95 = np.quantile(losses, 0.95)
norm from scipy.statstotal_steps (1 day = 1440 minutes)Nmu and standard deviation sigma of portfolio_losses datafrom scipy.stats import normtotal_steps = 1440N = 10000mu = portfolio_losses.mean() sigma = portfolio_losses.std()
daily_loss vector for N runsN runsloss vectornorm.rvs() to draw repeatedly from standard Normal distributionmu and sigma scaled by 1/total_stepsdaily_loss = np.zeros(N)for n in range(N):loss = ( mu * (1/total_steps) + norm.rvs(size=total_steps) * sigma * np.sqrt(1/total_steps) )
daily_loss, for each run nnp.quantile() to find the VaR at e.g. 95% confidence level, over daily_loss
daily_loss = np.zeros(N) for n in range(N):loss = mu * (1/total_steps) + ... norm.rvs(size=total_steps) * sigma * np.sqrt(1/total_steps)daily_loss[n] = sum(loss)VaR_95 = np.quantile(daily_loss, 0.95)
e_covQuantitative Risk Management in Python