Efficient AI Model Training with PyTorch
Dennis Lee
Data Engineer
Dropout and batch normalization
model.eval()
activates evaluation modeDropout and batch normalization
torch.no_grad()
disables gradientsmodel.eval
and torch.no_grad
:model.eval()
with torch.no_grad():
outputs = model(**inputs)
Computing gradients in backpropagation
validation_dataset = load_dataset("glue", "mrpc", split="validation")
def encode(examples):
return tokenizer(examples["sentence1"],
examples["sentence2"],
truncation=True,
padding="max_length")
validation_dataset = validation_dataset.map(encode, batched=True)
for epoch in range(num_epochs):
model.train() for step, batch in enumerate(train_dataloader): # Perform training step
model.eval() for step, batch in enumerate(eval_dataloader): # Perform evaluation step
# Log evaluation metrics
metric = evaluate.load("glue", "mrpc") model.eval() for step, batch in enumerate(eval_dataloader):
with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(predictions=predictions, references=references)
eval_metric = metric.compute() print(f"Eval metrics: \n{eval_metric}")
Eval metrics:
{'accuracy': 0.81, 'f1': 0.77}
log_with
: use all experiment tracking tools.init_trackers()
: initialize tracking tools.log()
: track accuracy
, f1
, epoch
.end_training()
: finish trackingaccelerator = Accelerator(project_dir=".", log_with="all")
accelerator.init_trackers("my_project")
for epoch in range(num_epochs): # Training loop is here # Evaluation loop is here accelerator.log({
"accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"],
}, step=epoch)
accelerator.end_training()
Efficient AI Model Training with PyTorch