Efficient AI Model Training with PyTorch
Dennis Lee
Data Engineer
scaler = torch.amp.GradScaler()
for batch in train_dataloader: inputs, targets = batch["input_ids"], batch["labels"]
with torch.autocast(device_type="cpu", dtype=torch.float16):
outputs = model(inputs, labels=targets) loss = outputs.loss
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
accelerator = Accelerator(mixed_precision="fp16")
model, optimizer, train_dataloader, lr_scheduler = \ accelerator.prepare(model, optimizer, train_dataloader, lr_scheduler)
for batch in train_dataloader: inputs, targets = batch["input_ids"], batch["labels"] outputs = model(inputs, labels=targets) loss = outputs.loss accelerator.backward(loss) optimizer.step() optimizer.zero_grad()
training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", fp16=True )
trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["validation"], compute_metrics=compute_metrics, )
trainer.train()
Efficient AI Model Training with PyTorch