Reinforcement Learning from Human Feedback (RLHF)
Mina Parham
AI Engineer
from trl import RewardTrainer, RewardConfig
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
# Load pre-trained model and tokenizer model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1) tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Load dataset in the required format dataset = load_dataset("path/to/dataset")
# Define training arguments training_args = RewardConfig(
output_dir="path/to/output/dir",
per_device_train_batch_size=8, per_device_eval_batch_size=8,
num_train_epochs=3,
learning_rate=1e-3
)
# Initialize the RewardTrainer
trainer = RewardTrainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
tokenizer=tokenizer,
)
# Train the reward model
trainer.train()
Reinforcement Learning from Human Feedback (RLHF)