Reinforcement Learning from Human Feedback (RLHF)
Mina Parham
AI Engineer




from trl import RewardTrainer, RewardConfigfrom transformers import AutoModelForSequenceClassification, AutoTokenizerfrom datasets import load_dataset
# Load pre-trained model and tokenizer model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1) tokenizer = AutoTokenizer.from_pretrained("gpt2")# Load dataset in the required format dataset = load_dataset("path/to/dataset")
# Define training arguments training_args = RewardConfig(output_dir="path/to/output/dir",per_device_train_batch_size=8, per_device_eval_batch_size=8,num_train_epochs=3,learning_rate=1e-3)
# Initialize the RewardTrainer
trainer = RewardTrainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
tokenizer=tokenizer,
)
# Train the reward model
trainer.train()
Reinforcement Learning from Human Feedback (RLHF)