Reinforcement Learning from Human Feedback (RLHF)
Mina Parham
AI Engineer
from datasets import load_dataset
import pandas as pd
# `load_dataset` simplifies loading and preprocessing datasets from various sources
# It provides easy access to a wide range of datasets with minimal setup
dataset = load_dataset("mteb/tweet_sentiment_extraction")
df = pd.DataFrame(dataset['train'])
id text label label_text
0 cb774db0d1 I'd have responded, if I were going 1 neutral
1 549e992a42 Sooo SAD I will miss you in San Diego!!! 0 negative
2 08ac60f138 my boss is bullying me... 0 negative
from transformers import AutoModelForCausalLM
# AutoModelForCausalLM simplifies loading and switching models
model = AutoModelForCausalLM.from_pretrained("openai-gpt")
from transformers import AutoTokenizer
# `AutoTokenizer` loads the correct tokenizer for the specified model
tokenizer = AutoTokenizer.from_pretrained("openai-gpt")
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
def tokenize_function(examples):
tokenized = tokenizer(examples["content"], padding="max_length", truncation=True)
return tokenized
tokenized_datasets = dataset.map(tokenize_function, batched=True)
training_args = TrainingArguments(
output_dir="test_trainer",
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
gradient_accumulation_steps=4)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"])
trainer.train()
Reinforcement Learning from Human Feedback (RLHF)