Reinforcement Learning from Human Feedback (RLHF)
Mina Parham
AI Engineer
For example:
import numpy as np
def least_confidence(prob_dist):
simple_least_conf = np.nanmax(prob_dist)
num_labels = float(prob_dist.size) # number of labels
least_conf = (1 - simple_least_conf) * (num_labels / (num_labels - 1))
return least_conf
def filter_low_confidence_predictions(prob_dists, threshold=0.5):
filtered_indices = [i for i, prob_dist in enumerate(prob_dists)
if least_confidence(prob_dist) > threshold]
return filtered_indices
prob_distribution_array = np.array([ [0.1, 0.1, 0.2], # Low confidence (0.2) [0.6, 0.2, 0.1], # High confidence (0.6) [0.3, 0.3, 0.4] # Medium confidence (0.4) ])
# Filter function with 0.5 threshold filtered_feedback_indices, filtered_confidences = filter_low_confidence_predictions(prob_distribution_array, threshold=0.5)
print(f"Filtered Confidence Scores: {filtered_confidences}")
Filtered Confidence Scores: [0.6]
import numpy as np import pandas as pd from sklearn.cluster import KMeans
def detect_anomalies(data, n_clusters=3): kmeans = KMeans(n_clusters=n_clusters, random_state=42) clusters = kmeans.fit_predict(data) centers = kmeans.cluster_centers_
# Calculate distances from cluster centers distances = np.linalg.norm(data - centers[clusters], axis=1) return distances
feedback_data = np.array([ [4.0], # Close to center of cluster [4.5], # Close to center of cluster [1.0], # Anomaly - far from main group [4.1], # Close to center of cluster [3.9] # Close to center of cluster ])
anomalies = detect_anomalies(confidences, n_clusters=1)
print(anomalies)
[0.5 1. 2.5 0.6 0.4]
Reinforcement Learning from Human Feedback (RLHF)