Pandas, Teil 2

Python für Fortgeschrittene

Hugo Bowne-Anderson

Data Scientist at DataCamp

BRICS

import pandas as pd
brics = pd.read_csv("path/to/brics.csv", index_col = 0)
brics
         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
Python für Fortgeschrittene

Daten indexieren und auswählen

  • Eckige Klammern
  • Fortgeschrittene Methoden
    • loc
    • iloc
Python für Fortgeschrittene

Spaltenzugriff [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics["country"]
BR          Brazil
RU          Russia
IN           India
CH           China
SA    South Africa
Name: country, dtype: object
Python für Fortgeschrittene

Spaltenzugriff [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
type(brics["country"])
pandas.core.series.Series
  • Eindimensionales beschriftetes Array
Python für Fortgeschrittene

Spaltenzugriff [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[["country"]]
         country
BR        Brazil
RU        Russia
IN         India
CH         China
SA  South Africa
Python für Fortgeschrittene

Spaltenzugriff [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
type(brics[["country"]])
pandas.core.frame.DataFrame
Python für Fortgeschrittene

Spaltenzugriff [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python für Fortgeschrittene

Zugriff auf Zeilen [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[1:4]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python für Fortgeschrittene

Zugriff auf Zeilen [ ]

         country    capital    area  population 
BR        Brazil   Brasilia   8.516      200.40    * 0 *
RU        Russia     Moscow  17.100      143.50    * 1 *
IN         India  New Delhi   3.286     1252.00    * 2 *
CH         China    Beijing   9.597     1357.00    * 3 *
SA  South Africa   Pretoria   1.221       52.98    * 4 *
brics[1:4]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python für Fortgeschrittene

Diskussion [ ]

  • Eckige Klammern: eingeschränkte Funktionalität
  • Idealerweise
    • Zweidimensionale NumPy-Arrays
    • my_array[rows, columns]
  • pandas
    • loc (auf Label basierend)
    • iloc (basierend auf ganzzahligen Positionsangaben)
Python für Fortgeschrittene

Zeilenzugriff loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc["RU"]
country       Russia
capital       Moscow
area            17.1
population     143.5
Name: RU, dtype: object
  • Zeile als pandas-Series
Python für Fortgeschrittene

Zeilenzugriff loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU"]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
  • DataFrame
Python für Fortgeschrittene

Zeilenzugriff loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python für Fortgeschrittene

Zeile & Spalte loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"], ["country", "capital"]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python für Fortgeschrittene

Zeile & Spalte loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[:, ["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python für Fortgeschrittene

Zusammenfassung

  • Eckige Klammern
    • Spaltenzugriff brics[["country", "capital"]]
    • Zugriff auf Zeilen: mittels Slicing brics[1:4]
  • loc (labelbasiert)
    • Zugriff auf Zeilen brics.loc[["RU", "IN", "CH"]]
    • Spaltenzugriff brics.loc[:, ["country", "capital"]]
    • Zugriff auf Zeilen und Spalten
      brics.loc[
      ["RU", "IN", "CH"], 
      ["country", "capital"]
      ]
      
Python für Fortgeschrittene

Zeilenzugriff iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU"]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
brics.iloc[[1]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
Python für Fortgeschrittene

Zeilenzugriff iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python für Fortgeschrittene

Zeilenzugriff iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[[1,2,3]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python für Fortgeschrittene

Zeile & Spalte iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"], ["country", "capital"]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python für Fortgeschrittene

Zeile & Spalte iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[[1,2,3], [0, 1]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python für Fortgeschrittene

Zeile & Spalte iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[:, ["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python für Fortgeschrittene

Zeile & Spalte iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[:, [0,1]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python für Fortgeschrittene

Lass uns üben!

Python für Fortgeschrittene

Preparing Video For Download...