Introduction to MLflow
Weston Bassler
Senior MLOps Engineer
Centralized storage location
Lifecycle management
Model
Registered Model
Model Version
Model Stage
Experiments
Runs
Model Versions
Registered Models
# Import from MLflow module from mlflow import MlflowClient
# Create an instance client = MlflowClient()
# Print the object client
<mlflow.tracking.client.MlflowClient object at 0x101d55f30>
# Create a Model named "Unicorn"
client.create_registered_model(name="Unicorn")
<RegisteredModel: creation_timestamp=1679404160448, description=None,
last_updated_timestamp=1679404160448, latest_versions=[], name='Unicorn',
tags={}>
# Search for registered models
client.search_registered_models(filter_string=MY_FILTER_STRING)
=
- equal to!=
- not equal toLIKE
- case-sensitive pattern matchILIKE
- case-insensitive pattern match# Filter string unicorn_filter_string = "name LIKE 'Unicorn%'"
# Search models client.search_registered_models(filter_string=unicorn_filter_string)
[<RegisteredModel: creation_timestamp=1679404160448, description=None,
last_updated_timestamp=1679404160448, latest_versions=[], name='Unicorn',
tags={}>,
<RegisteredModel: creation_timestamp=1679404276745, description=None,
last_updated_timestamp=1679404276745, latest_versions=[], name='Unicorn 2.0',
tags={}>]
Introduction to MLflow