Specifying parameters

Introduction to MLflow

Weston Bassler

Senior MLOps Engineer

Parameters

Coding

1 unsplash.com
Introduction to MLflow

Specifying parameters

parameter_1_name:

type: data_type
default: default_value
parameter_2_name:
type: data_type
default: default_value
Introduction to MLflow

Specifying parameters

Data types

  • float, string, etc...
  • defaults to string

Default value

  • parameter value if nothing specified during run
  • True, False, None, etc...
Introduction to MLflow

Parameters block

name: project_name
python_env: python_env.yaml
entry_points:
  main:

parameters: parameter_1: type: data_type default: default_value parameter_2: type: data_type default: default_value
command: "python train.py {parameter_1_name} {parameter_2_name}"
Introduction to MLflow

train_model.py

# Import libraries and modules
import mlflow
import mlflow.sklearn
import pandas as pd

import sys
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split # Training Data df = pd.read_csv('Salary_predict.csv') X = df[["experience", "age", "interview_score"]] y = df[["Salary"]]
Introduction to MLflow

train_model.py

# Train test split 
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7,
                                                    random_state=0)

# Set Auto logging for Scikit-learn flavor
mlflow.sklearn.autolog()

# Parameters n_jobs_param = int(sys.argv[1]) fit_intercept_param = bool(sys.argv[2])
# Train model lr = LinearRegression(n_jobs=n_jobs_param, fit_intercept=fit_intercept_param)
lr.fit(X_train, y_train)
Introduction to MLflow

MLproject

name: salary_model
python_env: python_env.yaml
entry_points:
  main:

parameters: n_jobs_param: type: int default: 1 fit_intercept_param: type: bool default: True
command: "python train_model.py {n_jobs_param} {fit_intercept_param}"
Introduction to MLflow

Running parameters

Python

mlflow.projects.run()
parameters={
        'parameter_1': data_value, 
        'parameter_2': data_value, 
    }

CLI

mlflow run
-P parameter_1=parameter_1_value
-P parameter_2=parameter_2_value
Introduction to MLflow

Projects run

# Import MLflow Module
import mlflow

# Run local Project
mlflow.projects.run(
    uri='./', entry_point='main', 
    experiment_name='Salary Model',

parameters={ 'n_jobs_param': 2, 'fit_intercept_param': False
})
Introduction to MLflow

Output

2023/04/07 18:50:22 INFO mlflow.projects.backend.local: === Running command 'source 
/.mlflow/envs/mlflow/bin/activate && python train_model.py 2 False' in run with ID
'422a6f589c984049ac03698efec8a286' ===

2023/04/07 18:50:28 INFO mlflow.projects: === Run (ID '422a6f589c984049ac03698efec8a286') succeeded ===
Introduction to MLflow

Run command

# Run main entry point from Salary Model experiment
mlflow run --entry-point main --experiment-name "Salary Model" \

-P n_jobs_param=3 -P fit_intercept_param=True ./
Introduction to MLflow

Output

# Run main entry point from Salary Model experiment
mlflow run --entry-point main --experiment-name "Salary Model" \
    -P n_jobs_param=3 -P fit_intercept_param=True ./
2023/04/07 19:08:51 INFO mlflow.projects.backend.local: === Running command 'source 
/.mlflow/envs/mlflow/bin/activate && python train_model.py 3 True' in run with ID 
'7c0a8885a3c7475a9aafc43c6fcae04d' ===
Introduction to MLflow

Let's practice!

Introduction to MLflow

Preparing Video For Download...