Introduction to MLflow
Weston Bassler
Senior MLOps Engieer
name: project_name python_env: python_env.yaml entry_points:
step_1: command: "python train_model.py"
step_2: command: "python evaluate_model.py {run_id}" parameters: run_id: type: str default: None
import mlflow # Step 1 step_1 = mlflow.projects.run( uri='./', entry_point='step_1' )
# Step 2 step_2 = mlflow.projects.run( uri='./', entry_point='step_2' )
import mlflow # Step 1 step_1 = mlflow.projects.run( uri='./', entry_point='step_1' )
print(step_1)
<mlflow.projects.submitted_run.LocalSubmittedRun object at 0x125eac8b0>
step_1.cancel()
- Terminate a current run
step_1.get_status()
- Get the status of a run
step_1.run_id
- run_id
of the run
step_1.wait()
- Wait for the run to finish
import mlflow # Step 1 step_1 = mlflow.projects.run( uri='./', entry_point='step_1' )
# Set variable for step_1 run_id step_1_run_id = step_1.run_id
# Step 2 step_2 = mlflow.projects.run( uri='./', entry_point='step_2',
parameters={ 'run_id': step_1_run_id }
)
Introduction to MLflow