Model serving

Introduction to MLflow

Weston Bassler

Senior MLOps Engineer

MLflow Models

  • Standardize model packaging

  • Log models

  • Model Evaluation

Introduction to MLflow

Model Deployment

ml-lifecycle

1 datacamp.com
Introduction to MLflow

REST API

  • /ping - for health checks

  • /health - for health checks

  • /version - for getting the version of MLflow

  • /invocations - for model scoring

  • Port 5000

Introduction to MLflow

Invocations endpoint

/invocations

No,Name,Subject
1,Bill Johnson,English
2,Gary Valentine,Mathematics

Content-Type:application/json or application/csv

{
    "1": {
        "No": "1",
        "Name": "Bill Johnson",
        "Subject": "English"
    },
    "2": {
        "No": "2",
        "Name": "Gary Valentine",
        "Subject": "Mathematics"
    }
}
Introduction to MLflow

CSV format

  • Pandas Dataframe

  • pandas_df.to_csv()

JSON format

  • dataframe_split - pandas DataFrame in split orientation

  • dataframe_records - pandas DataFrame in records orientation

Introduction to MLflow

DataFrame split

# Dataframe split orientation
{
  "dataframe_split": {
      "columns": ["sex", "age", "weight"],
      "data": [["male", 23, 160], ["female", 33, 120]]
  }
}
Introduction to MLflow

Serving Models

# MLflow serve command
mlflow models serve --help
Usage: mlflow models serve [OPTIONS]
Introduction to MLflow

Serve uri

# Local Filesystem
mlflow models serve -m relative/path/to/local/model
# Run ID
mlflow models serve -m runs:/<mlflow_run_id>/artifacts/model
# AWS S3
mlflow models serve -m s3://my_bucket/path/to/model
Introduction to MLflow

Serve example

# Serve model from run
mlflow models serve -m runs:/e84a122920de4bdeaedb54146deeb429/artifacts/model
2023/03/12 16:28:28 INFO mlflow.models.flavor_backend_registry: 
Selected backend for flavor 'python_function'
2023/03/12 16:28:28 INFO mlflow.pyfunc.backend: === Running command 
'exec gunicorn --timeout=60 -b 127.0.0.1:5000 -w 1 ${GUNICORN_CMD_ARGS} -- 
mlflow.pyfunc.scoring_server.wsgi:app'
[2023-03-12 16:28:29 -0400] [48431] [INFO] Starting gunicorn 20.1.0
[2023-03-12 16:28:29 -0400] [48431] [INFO] Listening at: http://127.0.0.1:5000 
(48431)
[2023-03-12 16:28:29 -0400] [48431] [INFO] Using worker: sync
[2023-03-12 16:28:29 -0400] [48432] [INFO] Booting worker with pid: 48432
Introduction to MLflow

Invocations Request

# Send dataframe_split orientation payload to MLflow
curl http://127.0.0.1:5000/invocations -H 'Content-Type: application/json' -d '{
  "dataframe_split": {
      "columns": ["sex", "age", "weight"],
      "data": [["male", 23, 160], ["female", 33, 120]]
  }
}'
{"predictions": [1, 0]}
Introduction to MLflow

Let's practice!

Introduction to MLflow

Preparing Video For Download...