Introduction to Data Versioning with DVC
Ravi Bhadauria
Machine Learning Engineer
Reproducible: recreate same outputs in different environments and time
Modular: written as distinct, independent, and testable modules
Consistent: Single source of truth for all parameters
Files should be in supported format
params.yaml
We'll work with YAML
.yaml
or .yml
Specify parameters as dictionaries
:
Comments start with #
Data types:
Data structures:
Indentation is important
# Key-value pairs
a: 1
b: 1.2
c: "String value"
# Arrays
a: [1, 2.2, 3, 4.8]
b:
- 5
- "String value"
# Nested dictionaries
a:
b: "Some value"
c: "Some other value"
# Data preprocessing paramters preprocess: ... target_column: RainTomorrow categorical_features: - Location - WindGustDir - ...
# Model training/evaluation paramters train_and_evaluate: rfc_params: n_estimators: 2 ...
# In model.py
def evaluate_model(model, X_test, y_test):
"""Evaluate a model on a test set and return metrics."""
y_pred = model.predict(X_test)
precision = precision_score(y_test, y_pred)
...
return { "accuracy": accuracy, "precision": precision,
"recall": recall, "f1_score": f1 }
# In entry-point code (train_and_evaluate.py)
from model import evaluate_model
metrics = evaluate_model(model, X_test, y_test)
Introduction to Data Versioning with DVC