Introduction to Data Visualization with Matplotlib
Ariel Rokem
Data Scientist

fig, ax = plt.subplots()ax.bar("Rowing", mens_rowing["Height"].mean())ax.bar("Gymnastics", mens_gymnastics["Height"].mean())ax.set_ylabel("Height (cm)") plt.show()

fig, ax = plt.subplots()ax.hist(mens_rowing["Height"])ax.hist(mens_gymnastics["Height"])ax.set_xlabel("Height (cm)") ax.set_ylabel("# of observations") plt.show()

ax.hist(mens_rowing["Height"], label="Rowing") ax.hist(mens_gymnastics["Height"], label="Gymnastics") ax.set_xlabel("Height (cm)") ax.set_ylabel("# of observations")ax.legend() plt.show()

ax.hist(mens_rowing["Height"], label="Rowing", bins=5)
ax.hist(mens_gymnastics["Height"], label="Gymnastics", bins=5)
ax.set_xlabel("Height (cm)")
ax.set_ylabel("# of observations")
ax.legend()
plt.show()

ax.hist(mens_rowing["Height"], label="Rowing",
bins=[150, 160, 170, 180, 190, 200, 210])
ax.hist(mens_gymnastics["Height"], label="Gymnastics",
bins=[150, 160, 170, 180, 190, 200, 210])
ax.set_xlabel("Height (cm)")
ax.set_ylabel("# of observations")
ax.legend()
plt.show()

ax.hist(mens_rowing["Height"], label="Rowing",
bins=[150, 160, 170, 180, 190, 200, 210],
histtype="step")
ax.hist(mens_gymnastics["Height"], label="Gymnastics",
bins=[150, 160, 170, 180, 190, 200, 210],
histtype="step")
ax.set_xlabel("Height (cm)")
ax.set_ylabel("# of observations")
ax.legend()
plt.show()

Introduction to Data Visualization with Matplotlib