A deeper dive into loading data

Introduction to Deep Learning with PyTorch

Jasmin Ludolf

Senior Data Science Content Developer, DataCamp

Our animals dataset

import pandas as pd
animals = pd.read_csv('animal_dataset.csv')
animal_name hair feathers eggs milk predator legs tail type
sparrow 0 1 1 0 0 2 1 0
eagle 0 1 1 0 1 2 1 0
cat 1 0 0 1 1 4 1 1
dog 1 0 0 1 0 4 1 1
lizard 0 0 1 0 1 4 1 2

Type categories: bird (0), mammal (1), reptile (2)

Introduction to Deep Learning with PyTorch

Our animals dataset: defining features

import numpy as np

# Define input features
features = animals.iloc[:, 1:-1]


X = features.to_numpy() print(X)
[[0 1 1 0 0 2 1]
 [0 1 1 0 1 2 1]
 [1 0 0 1 1 4 1]
 [1 0 0 1 0 4 1]
 [0 0 1 0 1 4 1]]
Introduction to Deep Learning with PyTorch

Back to our animals dataset: defining target values

# Define target values (ground truth)
target = animals.iloc[:, -1]
y = target.to_numpy()
print(y)
[0 0 1 1 2]
Introduction to Deep Learning with PyTorch

TensorDataset

import torch
from torch.utils.data import TensorDataset


# Instantiate dataset class dataset = TensorDataset(torch.tensor(X), torch.tensor(y))
# Access an individual sample input_sample, label_sample = dataset[0] print('input sample:', input_sample) print('label sample:', label_sample)
input sample: tensor([0, 1, 1, 0, 0, 2, 1])
label sample: tensor(0)
Introduction to Deep Learning with PyTorch

DataLoader

from torch.utils.data import DataLoader


batch_size = 2
shuffle = True
# Create a DataLoader dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)

$$

  • Epoch: one full pass through the training dataloader
  • Generalization: model performs well with unseen data
Introduction to Deep Learning with PyTorch

DataLoader

# Iterate over the dataloader
for batch_inputs, batch_labels in dataloader:
    print('batch_inputs:', batch_inputs)
    print('batch_labels:', batch_labels)
batch_inputs: tensor([[1, 0, 0, 1, 1, 4, 1],
        [1, 0, 0, 1, 0, 4, 1]])
batch_labels: tensor([1, 1])

batch_inputs: tensor([[0, 1, 1, 0, 1, 2, 1], [0, 0, 1, 0, 1, 4, 1]]) batch_labels: tensor([0, 2])
batch_inputs: tensor([[0, 1, 1, 0, 0, 2, 1]]) batch_labels: tensor([0])
Introduction to Deep Learning with PyTorch

Let's practice!

Introduction to Deep Learning with PyTorch

Preparing Video For Download...