Introducción a la estadística en Python
Maggie Matsui
Content Developer, DataCamp




Valor esperado: media de una distribución de probabilidad
Valor esperado de una tirada justa = $(1 \times \frac{1}{6}) + (2 \times \frac{1}{6}) +(3 \times \frac{1}{6}) +(4 \times \frac{1}{6}) +(5 \times \frac{1}{6}) +(6 \times \frac{1}{6}) = 3,5$

$$P(\text{die roll}) \le 2 = ~?$$

$$P(\text{tirada de un dado}) \le 2 = 1/3$$


Valor esperado de la tirada desigual = $(1 \times \frac{1}{6}) +(2 \times 0) +(3 \times \frac{1}{3}) +(4 \times \frac{1}{6}) +(5 \times \frac{1}{6}) +(6 \times \frac{1}{6}) = 3,67$.

$$P(\text{uneven die roll}) \le 2 = ~?$$

$$P(\text{uneven die roll}) \le 2 = 1/6$$

Describen la probabilidad de resultados discretos

Distribución uniforme discreta

print(die)
  number      prob
0      1  0.166667
1      2  0.166667
2      3  0.166667
3      4  0.166667
4      5  0.166667
5      6  0.166667
np.mean(die['number'])
3.5
rolls_10 = die.sample(10, replace = True)
rolls_10
  number      prob
0      1  0.166667
0      1  0.166667
4      5  0.166667
1      2  0.166667
0      1  0.166667
0      1  0.166667
5      6  0.166667
5      6  0.166667
...
rolls_10['number'].hist(bins=np.linspace(1,7,7)) 
plt.show()


np.mean(rolls_10['number']) = 3.0

mean(die['number']) = 3.5

np.mean(rolls_100['number']) = 3.4

mean(die['number']) = 3.5

np.mean(rolls_1000['number']) = 3.48

mean(die['number']) = 3.5
Conforme aumente el tamaño de la muestra, la media muestral se aproximará al valor esperado.
| Tamaño de la muestra | Media | 
|---|---|
| 10 | 3,00 | 
| 100 | 3,40 | 
| 1000 | 3.48 | 
Introducción a la estadística en Python