Supervised Learning in R: Regression
Nina Zumel and John Mount
Win-Vector LLC
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...$$
cmodel <- lm(temperature ~ chirps_per_sec, data = cricket)
temperature ~ chirps_per_sec
cricket
fmla_1 <- temperature ~ chirps_per_sec
fmla_2 <- blood_pressure ~ age + weight
+
for multiple inputsfmla_1 <- as.formula("temperature ~ chirps_per_sec")
$$ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... $$
cmodel
Call:
lm(formula = temperature ~ chirps_per_sec, data = cricket)
Coefficients:
(Intercept) chirps_per_sec
25.232 3.291
summary(cmodel)
Call:
lm(formula = fmla, data = cricket)
Residuals:
Min 1Q Median 3Q Max
-6.515 -1.971 0.490 2.807 5.001
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.2323 10.0601 2.508 0.026183 *
chirps_per_sec 3.2911 0.6012 5.475 0.000107 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.829 on 13 degrees of freedom
Multiple R-squared: 0.6975, Adjusted R-squared: 0.6742
F-statistic: 29.97 on 1 and 13 DF, p-value: 0.0001067
broom::glance(cmodel)
sigr::wrapFTest(cmodel)
Supervised Learning in R: Regression