Supervised Learning in R: Regression
Nina Zumel and John Mount
Win-Vector LLC
$$ RMSE = \sqrt{\overline{(y-pred)^2}} $$
where
# Calculate error
err <- houseprices$prediction - houseprices$price
price
: column of actual sale prices (in thousands)prediction
: column of predicted sale prices (in thousands)# Calculate error
err <- houseprices$prediction - houseprices$price
# Square the error vector
err2 <- err^2
# Calculate error
err <- houseprices$prediction - houseprices$price
# Square the error vector
err2 <- err^2
# Take the mean, and sqrt it
(rmse <- sqrt(mean(err2)))
58.33908
# Take the mean, and sqrt it
(rmse <- sqrt(mean(err2)))
58.33908
# The standard deviation of the outcome
(sdtemp <- sd(houseprices$price))
135.2694
Supervised Learning in R: Regression