Introduction to PySpark
Benjamin Schmidt
Data Engineer
Used PySpark for Machine Learning, ETL tasks, and much more more
Enthusiastic teacher of new tools for all!
-
Distributed data processing: Designed to handle large datasets across clusters
Supports various data formats including CSV, Parquet, and JSON
SQL integration allows querying of data using both Python and SQL syntax
Optimized for speed at scale
Big data analytics
Distributed data processing
Real-time data streaming
Machine learning on large datasets
ETL and ELT pipelines
Working with diverse data sources:
# Import SparkSession
from pyspark.sql import SparkSession
# Initialize a SparkSession
spark = SparkSession.builder.appName("MySparkApp").getOrCreate()
$$
.builder()
sets up a sessiongetOrCreate()
creates or retrieves a session.appName()
helps manage multiple sessions# Import and initialize a Spark session
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("MySparkApp").getOrCreate()
# Create a DataFrame
census_df = spark.read.csv("census.csv",
["gender","age","zipcode","salary_range_usd","marriage_status"])
# Show the DataFrame
census_df.show()
Introduction to PySpark