Introduction to PySpark
Ben Schmidt
Data Engineer
Types of joins: inner, left, right, and outer, like SQL
Syntax: DataFrame1.join(DataFrame2, on="column", how="join_type")
# Joining on id column using an inner join df_joined = df1.join(df2, on="id", how="inner")
# Joining on columns with different names df_joined = df1.join(df2, df1.Id == df2.Name, "inner")
Combines rows from two DataFrames with the same schema
Syntax: DataFrame1.union(DataFrame2)
# Union of two DataFrames with identical schemas
df_union = df1.union(df2)
Arrays: Useful for storing lists within columns, syntax: ArrayType(StringType(),False)`
from pyspark.sql.functions import array, struct, lit
# Create an array column
df = df.withColumn("scores", array(lit(85), lit(90), lit(78)))
Maps: Key-value pairs, helpful for dictionary-like data, MapType(StringType(),StringType())
from pyspark.sql.types import StructField, StructType, StringType, MapType
schema = StructType([
StructField('name', StringType(), True),
StructField('properties', MapType(StringType(), StringType()), True)
])
StructType(Structfield, Datatype())
# Create a struct column df = df.withColumn("name_struct", struct("first_name", "last_name"))
# Create a struct column df = df.withColumn("name_struct", struct("first_name", "last_name"))
Introduction to PySpark