Label encoding

Working with Categorical Data in Python

Kasey Jones

Research Data Scientist

What is label encoding?

The basics:

  • Codes each category as an integer from 0 through n - 1, where n is the number of categories
  • A -1 code is reserved for any missing values
  • Can save on memory
  • Often used in surveys

The drawback:

  • Is not the best encoding method for machine learning (see next lesson)
Working with Categorical Data in Python

Creating codes

Convert to categorical and sort by manufacturer name

used_cars['manufacturer_name'] = used_cars['manufacturer_name'].astype("category")

Use .cat.codes

used_cars['manufacturer_code'] = used_cars['manufacturer_name'].cat.codes
Working with Categorical Data in Python

Check output

print(used_cars[['manufacturer_name', 'manufacturer_code']])
      manufacturer_name  manufacturer_code
0                Subaru                 45
1                Subaru                 45
2                Subaru                 45
...                 ...                ...
38526          Chrysler                  8
38527          Chrysler                  8
Working with Categorical Data in Python

Code books / data dictionaries

An example code book from the American Housing Survey.

1 https://www.census.gov/data-tools/demo/codebook/ahs/ahsdict.html
Working with Categorical Data in Python

Creating a code book

codes = used_cars['manufacturer_name'].cat.codes
categories = used_cars['manufacturer_name']
name_map = dict(zip(codes, categories))

print(name_map)
{45: 'Subaru',
 24: 'LADA',
 12: 'Dodge',
 ...
}
Working with Categorical Data in Python

Using a code book

Creating the codes:

used_cars['manufacturer_code'] = used_cars['manufacturer_name'].cat.codes

Reverting to previous values:

used_cars['manufacturer_code'].map(name_map)
0        Acura
1        Acura
2        Acura
...
1 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html
Working with Categorical Data in Python

Boolean coding

Find all body types that have "van" in them:

# Code from previous lesson:
used_cars["body_type"].str.contains("van", regex=False)

Create a boolean coding:

used_cars["van_code"] = np.where(
  used_cars["body_type"].str.contains("van", regex=False), 1, 0)

used_cars["van_code"].value_counts()
0    34115
1     4416
Name: van_code, dtype: int64
Working with Categorical Data in Python

Encoding practice

Working with Categorical Data in Python

Preparing Video For Download...