Working with Categorical Data in Python
Kasey Jones
Research Data Scientist
The basics:
n
- 1, where n
is the number of categories-1
code is reserved for any missing valuesThe drawback:
Convert to categorical and sort by manufacturer name
used_cars['manufacturer_name'] = used_cars['manufacturer_name'].astype("category")
Use .cat.codes
used_cars['manufacturer_code'] = used_cars['manufacturer_name'].cat.codes
print(used_cars[['manufacturer_name', 'manufacturer_code']])
manufacturer_name manufacturer_code
0 Subaru 45
1 Subaru 45
2 Subaru 45
... ... ...
38526 Chrysler 8
38527 Chrysler 8
codes = used_cars['manufacturer_name'].cat.codes
categories = used_cars['manufacturer_name']
name_map = dict(zip(codes, categories))
print(name_map)
{45: 'Subaru',
24: 'LADA',
12: 'Dodge',
...
}
Creating the codes:
used_cars['manufacturer_code'] = used_cars['manufacturer_name'].cat.codes
Reverting to previous values:
used_cars['manufacturer_code'].map(name_map)
0 Acura
1 Acura
2 Acura
...
Find all body types that have "van" in them:
# Code from previous lesson:
used_cars["body_type"].str.contains("van", regex=False)
Create a boolean coding:
used_cars["van_code"] = np.where( used_cars["body_type"].str.contains("van", regex=False), 1, 0)
used_cars["van_code"].value_counts()
0 34115
1 4416
Name: van_code, dtype: int64
Working with Categorical Data in Python