Working with Categorical Data in Python
Kasey Jones
Research Data Scientist
adult = pd.read_csv("data/adult.csv")
adult.dtypes
Age int64
Workclass object
fnlgwt int64
Education object
Education Num int64
Marital Status object
Occupation object
Relationship object
...
Default dtype:
adult["Marital Status"].dtype
dtype('O')
Set as categorical:
adult["Marital Status"] = adult["Marital Status"].astype("category")
adult["Marital Status"].dtype
CategoricalDtype(categories=[' Divorced', ' Married-AF-spouse',
' Married-civ-spouse', ' Married-spouse-absent', ' Never-married',
' Separated', ' Widowed'], ordered=False)
my_data = ["A", "A", "C", "B", "C", "A"]
my_series1 = pd.Series(my_data, dtype="category")
print(my_series1)
0 A
1 A
2 C
...
dtype: category
Categories (3, object): [A, B, C]
my_data = ["A", "A", "C", "B", "C", "A"]
my_series2 = pd.Categorical(my_data, categories=["C", "B", "A"], ordered=True)
my_series2
[A, A, C, B, C, A]
Categories (3, object): [C < B < A]
Memory saver:
adult = pd.read_csv("data/adult.csv")
adult["Marital Status"].nbytes
260488
adult["Marital Status"] = adult["Marital Status"].astype("category")
adult["Marital Status"].nbytes
32617
Create a dictionary:
adult_dtypes = {"Marital Status": "category"}
Set the dtype
parameter:
adult = pd.read_csv("data/adult.csv", dtype=adult_dtypes)
Check the dtype
:
adult["Marital Status"].dtype
CategoricalDtype(categories=[' Divorced', ' Married-AF-spouse',
..., ' Widowed'], ordered=False)
Working with Categorical Data in Python