Introduction to TensorFlow in Python
Isaiah Hull
Visiting Associate Professor of Finance, BI Norwegian Business School
import numpy as np
import tensorflow as tf
# Define example borrower features
young, old = 0.3, 0.6
low_bill, high_bill = 0.1, 0.5
# Apply matrix multiplication step for all feature combinations
young_high = 1.0*young + 2.0*high_bill
young_low = 1.0*young + 2.0*low_bill
old_high = 1.0*old + 2.0*high_bill
old_low = 1.0*old + 2.0*low_bill
# Difference in default predictions for young
print(young_high - young_low)
# Difference in default predictions for old
print(old_high - old_low)
0.8
0.8
# Difference in default predictions for young
print(tf.keras.activations.sigmoid(young_high).numpy() -
tf.keras.activations.sigmoid(young_low).numpy())
# Difference in default predictions for old
print(tf.keras.activations.sigmoid(old_high).numpy() -
tf.keras.activations.sigmoid(old_low).numpy())
0.16337568
0.14204389
tf.keras.activations.sigmoid()
sigmoid
tf.keras.activations.relu()
relu
tf.keras.activations.softmax()
softmax
import tensorflow as tf
# Define input layer
inputs = tf.constant(borrower_features, tf.float32)
# Define dense layer 1
dense1 = tf.keras.layers.Dense(16, activation='relu')(inputs)
# Define dense layer 2
dense2 = tf.keras.layers.Dense(8, activation='sigmoid')(dense1)
# Define output layer
outputs = tf.keras.layers.Dense(4, activation='softmax')(dense2)
Introduction to TensorFlow in Python