Introduction to TensorFlow in Python
Isaiah Hull
Visiting Associate Professor of Finance, BI Norwegian Business School
import tensorflow as tf
# Define inputs (features)
inputs = tf.constant([[1, 35]])
# Define weights
weights = tf.Variable([[-0.05], [-0.01]])
# Define the bias
bias = tf.Variable([0.5])
# Multiply inputs (features) by the weights
product = tf.matmul(inputs, weights)
# Define dense layer
dense = tf.keras.activations.sigmoid(product+bias)
import tensorflow as tf
# Define input (features) layer
inputs = tf.constant(data, tf.float32)
# Define first dense layer
dense1 = tf.keras.layers.Dense(10, activation='sigmoid')(inputs)
# Define second dense layer
dense2 = tf.keras.layers.Dense(5, activation='sigmoid')(dense1)
# Define output (predictions) layer
outputs = tf.keras.layers.Dense(1, activation='sigmoid')(dense2)
dense = keras.layers.Dense(10,\
activation='sigmoid')
prod = matmul(inputs, weights)
dense = keras.activations.sigmoid(prod)
Introduction to TensorFlow in Python