Importing and Managing Financial Data in Python
Stefan Jansen
Instructor
pandas
DataFrame
from pandas_datareader.data import DataReader
from datetime import date # Date & time functionality
start = date(2015, 1, 1) # Default: Jan 1, 2010 end = date(2016, 12, 31) # Default: today
ticker = 'GOOG' data_source = 'yahoo'
stock_data = DataReader(ticker, data_source, start, end)
stock_data.info()
DatetimeIndex: 504 entries, 2015-01-02 to 2016-12-30
Data columns (total 6 columns):
# Column Non-Null Count Dtype
-- ------ -------------- -----
0 High 504 non-null float64 # First price
1 Low 504 non-null float64 # Highest price
2 Open 504 non-null float64 # Lowest price
3 Close 504 non-null float64 # Last price
4 Volume 504 non-null float64 # No shares traded
5 Adj Close 504 non-null float64 # Adj. price
dtypes: float64(6)
memory usage: 27.6 KB
pd.concat([stock_data.head(3), stock_data.tail(3)])
High Low Open Close Volume Adj Close
Date
2015-01-02 26.49 26.13 26.38 26.17 28951268 26.17
2015-01-05 26.14 25.58 26.09 25.62 41196796 25.62
2015-01-06 25.74 24.98 25.68 25.03 57998800 25.03
2016-12-28 39.71 39.16 39.69 39.25 23076000 39.25
2016-12-29 39.30 38.95 39.17 39.14 14886000 39.14
2016-12-30 39.14 38.52 39.14 38.59 35400000 38.59
import matplotlib.pyplot as plt
stock_data['Close'].plot(title=ticker) plt.show()
Importing and Managing Financial Data in Python