Importing and Managing Financial Data in Python
Stefan Jansen
Instructor
market_cap = nasdaq['Market Capitalization'].div(10**6) median = market_cap.quantile(.5)
median == market_cap.median()
True
quantiles = market_cap.quantile([.25, .75])
0.25 43.375930
0.75 969.905207
quantiles[.75] - quantiles[.25] # Interquartile Range
926.5292771575
deciles = np.arange(start=.1, stop=.91, step=.1)
deciles
array([ 0.1, 0.2, 0.3, 0.4, ..., 0.7, 0.8, 0.9])
market_cap.quantile(deciles)
0.1 4.884565
0.2 26.993382
0.3 65.714547
0.4 124.320644
0.5 225.968428
0.6 402.469678
...
title = 'NASDAQ Market Capitalization (million USD)'
market_cap.quantile(deciles).plot(kind='bar', title=title)
plt.tight_layout(); plt.show()
market_cap.describe()
count 3167.000000
mean 3180.712621
std 25471.038707
min 0.000000
25% 43.375930 # 1st quantile
50% 225.968428 # Median
75% 969.905207 # 3rd quantile
max 740024.467000
Name: Market Capitalization
market_cap.describe(percentiles=np.arange(.1, .91, .1))
count 3167.000000
mean 3180.712621
std 25471.038707
min 0.000000
10% 4.884565
20% 26.993382
30% 65.714547
40% 124.320644
50% 225.968428
60% 402.469678
70% 723.163197
80% 1441.071134
...
Importing and Managing Financial Data in Python