Importing and Managing Financial Data in Python
Stefan Jansen
Instructor
pd.read_excel(file, sheet_name=0)
sheet_name=0
sheet_name='amex'
sheet_name=['amex', 'nasdaq']
amex = pd.read_excel('listings.xlsx', sheet_name='amex', na_values='n/a')
amex.info()
RangeIndex: 360 entries, 0 to 359
Data columns (total 7 columns):
# Column Non-Null Count Dtype
-- ------ -------------- -----
0 Stock Symbol 360 non-null object
1 Company Name 360 non-null object
2 Last Sale 346 non-null float64
3 Market Capitalization 360 non-null float64
4 IPO Year 105 non-null float64
listings = pd.read_excel('listings.xlsx', sheet_name=['amex', 'nasdaq'], # keys = sheet name na_values='n/a') # values = DataFrame
listings['nasdaq'].info()
# Column Non-Null Count Dtype
-- ------ -------------- -----
0 Stock Symbol 3167 non-null object
1 Company Name 3167 non-null object
2 Last Sale 3165 non-null float64
3 Market Capitalization 3167 non-null float64
4 IPO Year 1386 non-null float64
...
xls = pd.ExcelFile('listings.xlsx') # pd.ExcelFile object
exchanges = xls.sheet_names
exchanges
['amex', 'nasdaq', 'nyse']
nyse = pd.read_excel(xls,
sheet_name=exchanges[2],
na_values='n/a')
nyse.info()
RangeIndex: 3147 entries, 0 to 3146
Data columns (total 7 columns):
# Column Non-Null Count Dtype
-- ------ -------------- -----
0 Stock Symbol 3147 non-null object
1 Company Name 3147 non-null object
... ...
6 Industry 2177 non-null object
dtypes: float64(3), object(4)
memory usage: 172.2+ KB
Importing and Managing Financial Data in Python